RECONSIDERING VOWELS AS MATHEMATICAL AND STATISTICAL ENTITIES

Douglas S. Bigham douglas.s.bigham@gmail.com

American Dialect Society Annual Meeting at the annual meeting of the Linguistic Society of America

6-9 January, 2011, Pittsburgh

A RETURN TO FIRST PRINCIPLES

• What are VOWELS?

- perceptual entities
- contrastive items for the perception of DIALECTS
- contextually determined entities
- non-meaningful linguistic atoms
- How do we investigate VOWELS?
 - Sampling TOKENS from SPEAKERS of DIALECTS
 - Measuring FORMANTS
 - Comparing FORMANT values using STATISTICS
- We must reconsider these methods.

SAMPLING TOKENS FROM SPEAKERS

• What and How Much information can we lose?

• GOOSE – averaged across tokens and speakers

GOOSE – INDIVIDUAL SPEAKERS, TOKENS

GOOSE – INDIVIDUAL SPEAKERS, TOKENS

DIFFERENT WAYS OF VARYING

WHAT INFORMATION DO WE NEED?

o GOOSE varies from fully back to fully central

- Variation is both WITHIN and BETWEEN individuals
- Which form of variation is more important?
- GOOSE varies differently than other vowels
- Do these patterns of variation have meaning?
- What does it *mean* to average a percept?

• Is there an appropriate N for TOKENS or SPEAKERS?

• A linguistics-driven statistical methodology...

CAN A VOWEL BE REDUCED TO F1xF2?

• Why do we use F1xF2?

• Labov, Yaeger, Steiner (1972)

o DeLattre, Liberman, Cooper, & Gerstman (1952)

- An Experimental Study of the Acoustic Determinants of Vowel Color; Observations on One- and Two-Formant Vowels Synthesized from Spectrographic Patterns
- DLCG were measuring perception via Hz values
- Modern sociophonetics measures Hz values...
- FORMANTS are continuous; VOWELS are discrete
 - DLCG used 120Hz chunks of F2

ADDITIONAL ISSUES WITH THE F1xF2 MODEL

• Should F1 and F2 be measured on the same scale?

- F1 has less freedom for variation (space) than F2
- F1 ~800Hz ; F2 ~ 1600Hz
- jnd discrimination threshold = ~25Hz (Snodgrass, 1975)
- In F1, there are only about 800/25 or 32 possible distinct regions of perception; F2 = -64
 - Yet we report values like 816Hz x 1507Hz...
- o F1xF2 always co-varies for VOWELS in vowel-space
 - But not to the same extent for all vowels...
 - ...or for all speakers

F1xF2 CORRELATIONS FOR DIFFERENT VOWELS

F1xF2 CORRELATIONS FOR DIFFERENT VOWELS

ARE VOWELS STATISTICAL?

o Taleb, 2008 - Limits of Statistics

	Simple (Yes/No)	Complex (How much?)
Thin-tailed, known distributions	Robust	Robust
Fat-tailed & unknown distributions	Robust	FRAGILE! DO NOT STATISTIZE!

• What quadrant are VOWELS in?

THE POWER OF N IN SOCIOPHONETICS

• As N (sample size) increases, so does the chance of finding a significant difference

• Is there an appropriate N for TOKENS or SPEAKERS?

• How many SPEAKERS, VOWELS, and TOKENS are enough? Is it possible to have too many?

Comparing DRESS and TRAP using a basic *t*-Test
 Note "Critical Difference"...
 ... below 25Hz is below jnd!

DIFFERENCE BETWEEN DRESS AND TRAP

SUMMARY

• Reconsider our underlying principles

- VOWELS are perceptual objects
- Perceptual constraints must drive investigation
- Reconsider our methods
 - When can we use averages and when not? (GOOSE)
 - Do the same methods work for all VOWELS?
 o cf. diphthongs & monophthongs ; front & back vowels
 - If we continue using F1xF2 we must establish a significance value (20Hz in F1 ; 40Hz in F2?)
- Reconsider our statistics
 - We need a linguistically-driven statistical method
 - Fewer speakers & tokens may be better than more

THANK YOU!

douglas.s.bigham@gmail.com

